

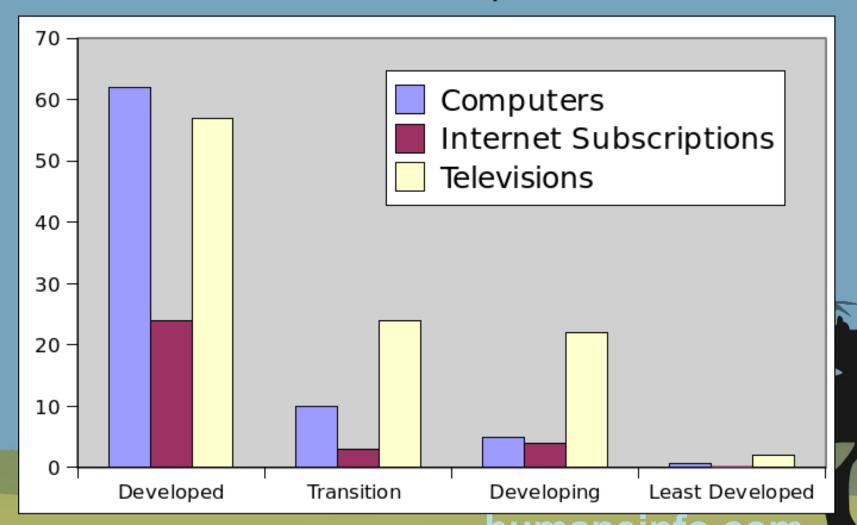
Braddock Gaskill
Humane Informatics
braddock@braddock.com

W-

Talk Overview

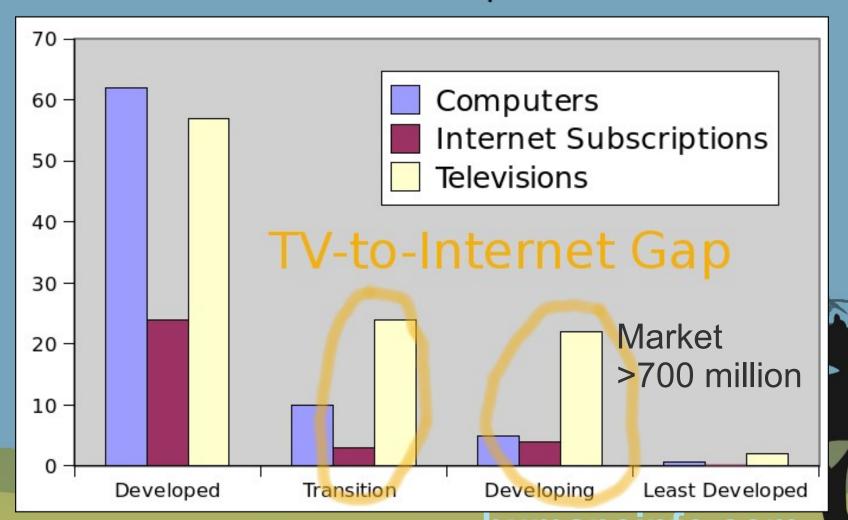
Today's Audience

- Independently Wealthy Philanphrapists
- •Non-Governmental Organizations, UN, etc
- •DoD Civil Affairs, USAID
- Geeks interested in
 - Playing with Microcontrollers
 - •Building & Fabricating things
 - Open Source Tools and Hardware


•Today's Talk

- Overview and demo of device
- Survey of AVR Open Source Hardware
- Survey of AVR Open Source Tools
- Walk through of design and design tools
- •Walk through of fabrication and manufacturing

Bridging TV/Internet Gap


Global Information Access per 100 Inhabitants

"The Global Information Society: a Statistical View", 2008

Bridging TV/Internet Gap

Global Information Access per 100 Inhabitants

"The Global Information Society: a Statistical View", 2008

Pitch

- •2GB **SD Card** = ~5,000 books or better part of **Wikipedia**
- Humane Reader device turns any TV set into an e-book/wikipedia reader.
- Production Cost approx \$20 (incl SD Card)

Value Proposition

•The Humane Reader can provide a virtual library to any developing world school or individual with electrical power for less than the cost of a single textbook.

Secondary Goals

- •Goal: Create an extendable, hackable, 8-bit general computing platform both for first through third world developers and experimenters.
- •Effect: Join and leverage the existing open source hardware community (Arduino, AVR, etc) to spur further development.
- •Effect: Provide a learning platform as well as simple e-book reader.

Demo

DEMO

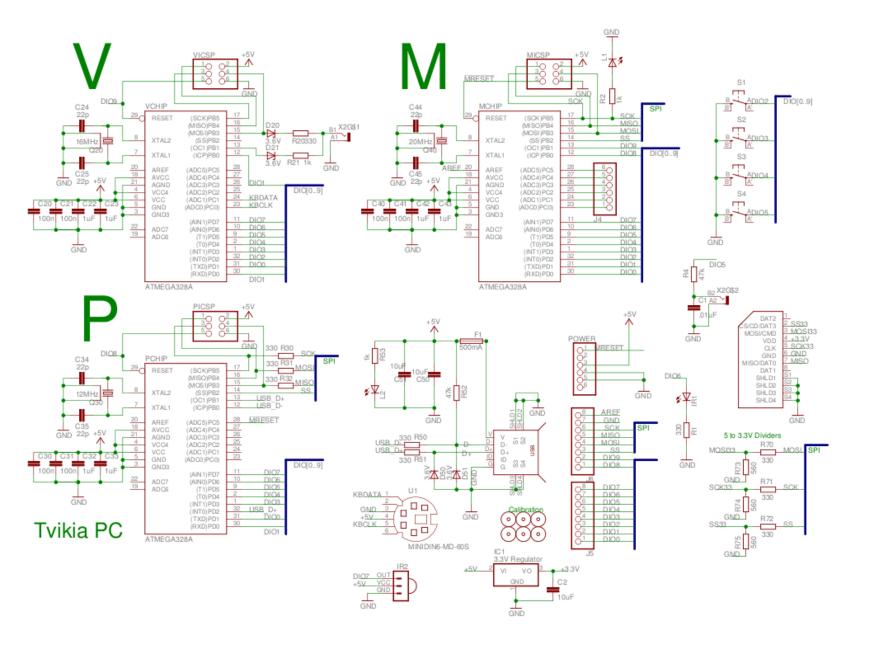
Design Requirements

- •NTSC/PAL Video Output
- SD Card Interface (w/FAT)
- Cheap Input Interface (buttons)
- Power (Micro-USB Adaptor)
- PS/2 Keyboard Interface (optional)
- •USB interface (optional)
- Audio (optional)
- •IR (optional)

AVR Open Ecosystem: Uzebox

AVR Open Ecosystem: Uzebox

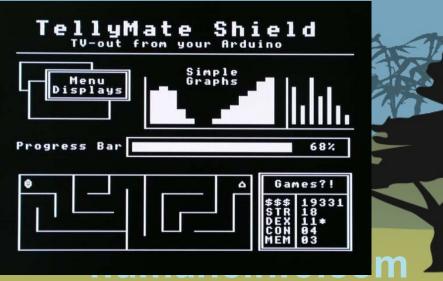
- •8-bit gaming "console"
- •FEATURES: NTSC/PAL color video output, game controller input, SD Card, custom "kernel", solid community
- •FAILURES: expensive video chip, expensive MCU (Atmega644), overclocked design
- •Too Expensive (\$95 sparkfun)


AVR Open Ecosystem: Arduino

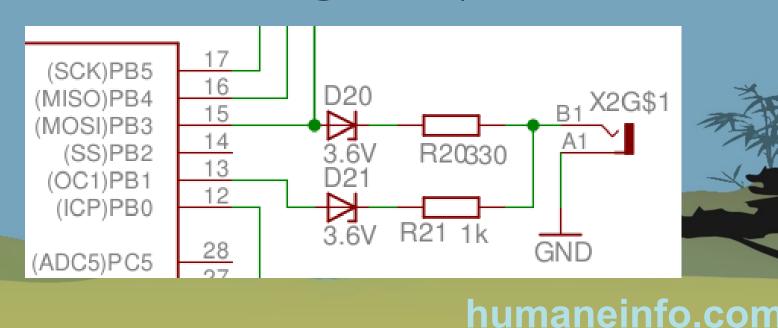
•HARDWARE:

- •Simple break-out board with pseudostandard expansion headers
- Wide variety of extension "shields" Ethernet, Wifi, Bluetooth, SD Cards, video
- •SOFTWARE: Provides an educationally-oriented "easy" IDE.
- COMMUNITY: Excellent. Dev tutorials, for etc
- CONCLUSION: Shield, IDE, and software compatible.

AVR Open Ecosystem: Tools


- •avr-gcc compiler full C, partial C++, bintools, well supported alternative to Atmel's compiler
- •avr-libc standard C library for AVR. Includes printf, etc (roll your own IO backend)
- •avrdude OSS Programmer many methods
- •simulavr emulator several OSS emulators waste of time (?)
- •avarice JTAG debugging. HW Expensive. Glitchy (-Os). AVR Dragon for <32k MCUs.

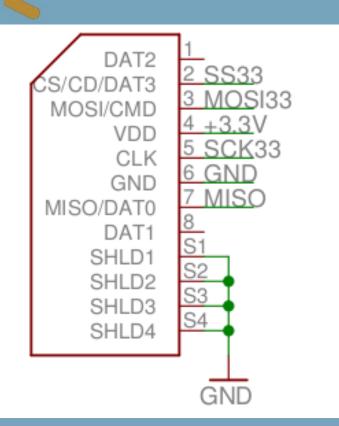
Video Output

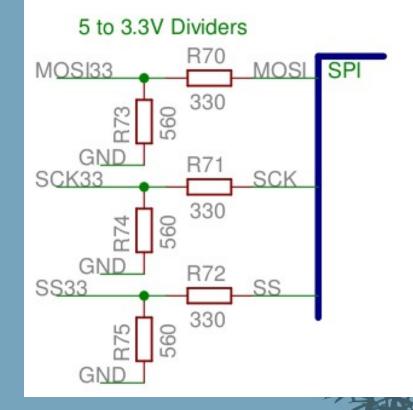

- •REQ: NTSC/PAL Video Output
- •**PROBLEM:** Very fast signal. For B&W, only a few cycles per dot.
- **SOLUTION:** Use existing **Tellymate** project software.

Video Output

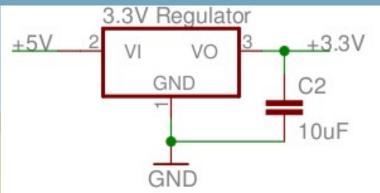
- **SOLUTION:** Use existing **Tellymate** project software.
- •Tellymate uses MCU's SPI device to output 9 dots at a time (~22 cycles per SPI buffer load @16MHz).

SD Card Requirement


•Interface:


- •SD Cards have a simple 4-wire SPI hardware interface.
- •3.3V signal levels
- •SOLUTION: 5V to 3.3V voltage dividers for MCU output, MCU can discern 3.3V input

•Power:


- •SD Card needs 3.3V power
- •theoretical (but not observed) current requirements are high.
- •SOLUTION: Add 3.3V regulator
- •3.3V handling "inspired" by Uzebox schematic

SD Card Schematic

naneinfo.com

FAT Filesystem

- Several Open Source AVR FAT on SPI SD Card implementations
 - WaveHC library for Arduino
 - Uzebox
 - •FatFS and Petite FatFS (pFatFS same author)
- •SOLUTION: Petite FatFS
 - Chosen for tiny size and simplicity
 - AVR SD Card example required hacking
 - bad timings

FAT FS Issues

•Issues with FAT FS on SD Card

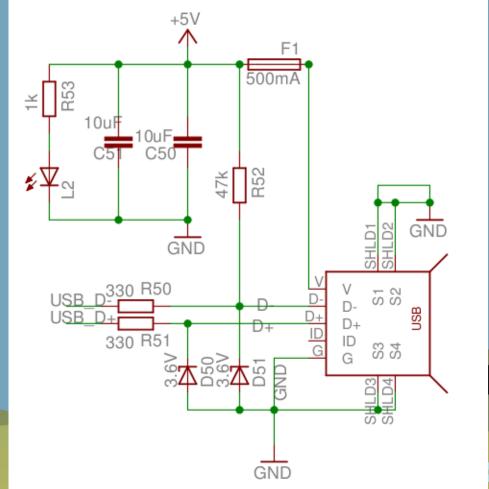
- Minimal RAM for caching (2kbyte MCU)
- Reading 1 byte requires reading full 512 byte sector from SD Card
- •FAT random seek times LINEAR to seek position (VERY bad for 2 GB database).

Solutions

- Minimal 128 byte cache added
- Non-fragmented file seek optimization

USB

•USB Power

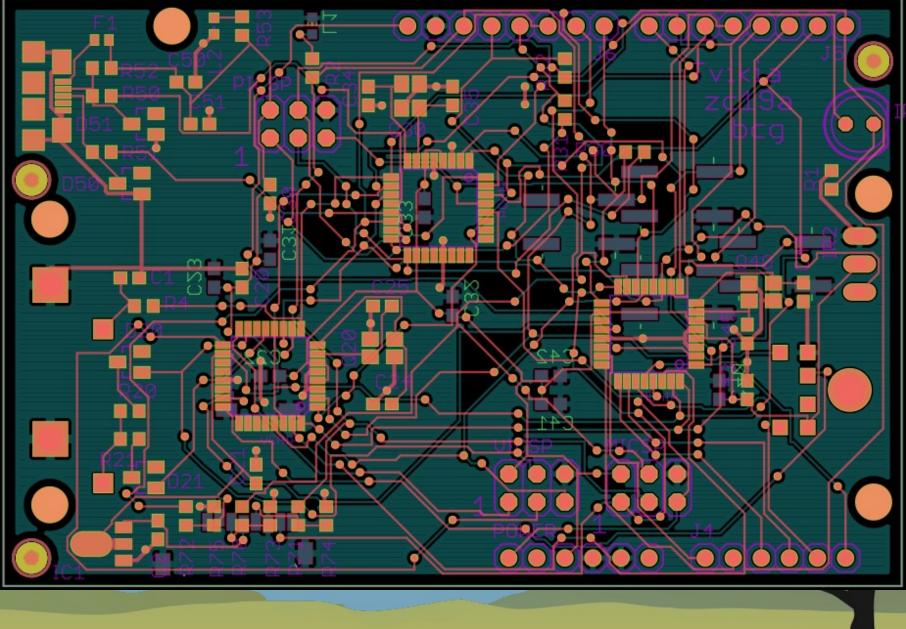

- Micro-USB 5V power connector
- Micro-USB new world-wide cell phone charger standard = low cost

•USB Data Interface

- Arduino uses a serial bootloader w/FT232
 USB serial chip
- •FT232 more expensive, less flexible than adding a third Atmega for USB peripherals
- Open V-USB project provides firmware

USB Schematic

•USB provides regulated **5V power**, but needs **3.3V data signaling**

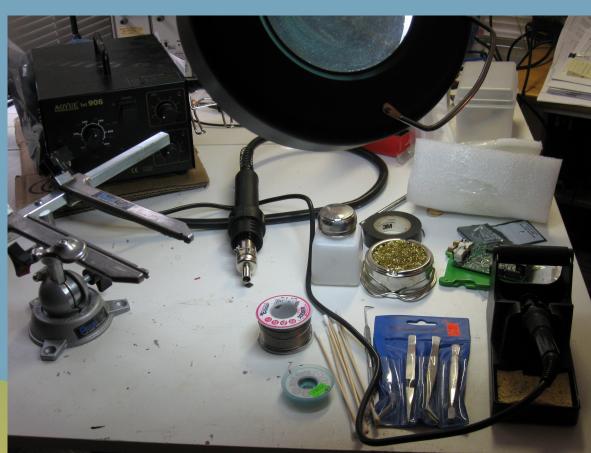


Free or Open EDA Tools

- Open Source GEDA Suite
 - •(as of 2005, when I last used them)
 - •gschem schematic capture "decent and usable"
 - •pcb layout "unsophisticated?"
- Cadsoft Eagle (freeware/commercial)
 - •Unixy-feel scriptable, cmd line, mostly parsable text file formats
 - Free for simpler layouts
 - •"Professional grade!"
- PCB Artist
 - •freeware, Advanced Circuits
 - new, simple, but Advanced lock-in

PCB Fabrication

- Advanced Circuits
 - Leader by far for fast-turn PCB fab
 - Made in USA, great capabilities
 - •"What I use for prototypes"
- BatchPCB.com
 - super low cost
 - batch together low volume panels of individual orders for fab in China
 - long lead time


47-

Home PCB Assembly

Prototypes assembled myself

Tools for SMT home assembly

- Liquid flux w/needle dispenser bottle
- PCB cleaning alcohol and swabs
- •Fine tip soldering iron
- •desolder braid, etc
- GOOD tweezers
- Magnifier (Microscope)
- Hot air rework station
- Solder paste (optional)
- Good PCB vice

Suppliers



1759 E. Colorado Blvd. Pasadena, CA 91106

Enclosure

- •#1 No Enclosure
 - Hobbiests require no enclosure
- •#2 Conformal Coating/Paint
 - Conformal Coating an acrylic gloss used to protect PCBs
- •#3 Plate/Spacer Sandwich
 - Cost effective <1KU
- •#4 Plastic Case
 - Tooling Cost
 - Cost effective >1KU

PCB Assembly

- Screaming Circuits
 - Leader in USA
 - *Asmbly*: 100U = **\$27** per board!
- •EzPCB
 - China
 - Set up for easy small runs
 - •Asmbly:
 - •100U = **\$9** per board
 - •1000U = **\$6** per board
 - •10kU = **\$4.50** per board

Production Cost

Tvikia Reader Production Costs			
	100 U	1000 U	10k U
Parts (3)	\$12.37	\$ 9.27	\$ 8.60
PCB Fab (1)	\$ 2.15	\$ 0.95	\$ 0.51
Assembly (1)	\$ 9.00	\$ 6.00	\$ 4.50
Shipping (4)	\$ 1.20	\$ 0.75	\$ 0.50(2)
Coating (5)	\$ 0.25	\$ 0.25	\$ 0.25
TOTAL	\$24.97	\$17.21	\$14.36
(1) EzPCB Quote BASED ON PC DESIGN - add \$138 setup			
(2) Guestimate. Cheaper and slower shipping is available.			
(3) See BOM for part cost details - No SDCard			
(4) Shipping from Chinese Manufacturer			
(5) Conformal Coating, \$50/m^2 (ezpcb)			

*Does not include enclosure or SD Card

Fin

Braddock Gaskill braddock@braddock.com

Humane Informatics http://humaneinfo.com

