
A Brief Overview of the World
of Parallel Programming

Mike Elliott
mre@m79.net

CPUs and GPUs

• CPU – Core
– Local cache
– Registers
– control unit

• GPU – Compute unit
– Cache
– Registers
– SIMD
– Threading

CPU vs GPU Organization

CPU – Low Latency

• Large cache – on chip

• Sophisticated control
– Branch prediction
– Data forwarding

• Powerful ALU

GPU – High Throughput

• Throughput oriented design

• Small caches

• Simple control

• Energy efficient ALUs

• Massive number of threads to tolerate
latencies

Heterogeneous Programming

• Use both CPU and GPU

• Use CPU for serial parts
– Where latency matters

• Use GPU for parallel parts
– Where throughput matters

CUDA C

• Compute Unified Device Architecture
– Created by Nvidia

• Hierarchical thread organization

• Heterogeneous host + device
programming
– Serial code host
– Parallel code (kernel) device

CUDA Architecture

• Three dimensional grid
– This constitutes the “kernel”

• Three dimensional blocks in the grid
– Holds local memory and threads
– Maximum threads determined by hardware

• Threads of execution
– “Warp” of 32 threads

Von Neumann Architecture

Memory I/O

ALU Registers

PC IRControl Unit

Processing Unit

Thread

SPMD

• Single Program, Multiple Data
• All threads run the exact same program
• Each thread knows its indices
– Compute memory addresses
– Make control decisions
– int ndx = blockIdx.x * blockDim.x + threadIdx.x

Thread Blocks

Threads are organized into blocks
• Threads within a block cooperate via
– Shared memory
– Synchronization
– Atomic operations

• Threads in different blocks cannot affect
each other

Grid of Thread Blocks

CUDA Function Declarations

executed callable

__device__ float deviceFunction() device device

__global__ void kernelFunction() device host

__host__ float hostFunction() host host

__global__ denotes a kernel function

 must return void

__device__ and __host__ can be used together

Vector Addition

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

Z1 Z2 Z3 Z4 Z5

+ ++++

== = ==

Vector Addition (kernel)

// CUDA C

//

__global__

void vecAddKern(float* result, float* a, float* b, int
count) {

 const int ndx = blockIdx.x * blockDim.x +
threadIdx.x;

 if (ndx < count)

 result[ndx] = a[ndx] + b[ndx];

}

Vector Addition (host)

// CUDA C

__host__

void vecAdd(float* result, float* a, float* b, int
count) {

 // magic to allocate memory, etc., here

 dim3 dimGrid = (ceil(count/256), 1, 1);

 dim3 dimBlock = (256, 1, 1);

 vecAddKern<<<dimGrid, dimBlock>>>(rr, aa,
bb, count);

 // magic to deallocate memory, store result, etc.,
here

}

Host / Device Memory

• Host can transfer data to and from device
• Within a device, blocks can access device

global memory
• Within a block, threads can access block

local memory
• Within a thread, a set of registers exists

which are local to that thread

Memory Hierarchy

Streaming Multiprocessors

Executing Thread Blocks

• Threads assigned in blocks
– Up to 8 blocks per SM (typical)
– Up to 1536 total threads (typical)

• SM manages block/thread indices
• SM schedules thread execution

Scalability

Warps As Scheduling Unit

• 32 threads are assigned to a warp (typical)
• An implementation detail
– Not part of the CUDA programming model

• Warps execute in Single Instruction
Multiple Data mode

Warp Scheduling

Zero Overhead Warp Scheduling

• At any time, 1 of a small number of warps
are executed by the SM

• Next operands ready, warp is eligible for
execution

• Eligible warps selected based on priority
• All threads in a warp execute the same

instruction when warp is selected

Warp Organization

• Threads are allocated sequentially into
warps
– Warp 0 starts with thread 0, etc.

• This is actually predictable and can be
used to optimize code

• Warp size can change from generation to
generation

• Never rely on ordering within warps or
between warps

Control Flow

• Main concern with branching is divergence
• Threads within a single warp take different

paths
• Different paths are serialized in current

GPUs
– Control paths taken by threads are traversed

one at a time until all are completed

Control Divergence

Divergence Examples

• With control divergence:
– if (threadIdx.x > 2) …
– Two different control paths in a warp

• Without control divergence:
– if (threadIdx.x / WARP_SIZE > 2) . . .
– Two different control paths in the block

Open CL

• Initiated by Apple
• Cross platform programming in CPUs,

GPUs, FPGAs, DSPs, etc.
• Draws heavily on CUDA

– More complex and busy due to need to
maximize portability

• Many design decisions made to ease the
task of vendors adapting to OpenCL

Open ACC

• Can be used to write data parallel
programs in Fortran, C and C++

• Uses compiler directives (pragmas)
– #pragma in C or C++

• Programmers can often begin with a fully
sequential version then annotate with
pragmas for parallelization

• Pragmas can be ignored (maybe)

C++ AMP

• From Microsoft
• Similar to Open ACC
• Allows programmers to assert more

control
• Can use multidimensional indices so that

the data doesn't have to be manually
linearized

Matrix Multiplication

Tiled Matrix Multiplication

	A Brief Overview of the World of Parallel Programming
	CPUs and GPUs
	CPU vs GPU Organization
	CPU – Low Latency
	GPU – High Throughput
	Heterogeneous Programming
	CUDA C
	CUDA Architecture
	Von Neumann Architecture
	SPMD
	Thread Blocks
	Grid of Thread Blocks
	Slide 13
	Vector Addition
	Vector Addition (kernel)
	Vector Addition (host)
	Host / Device Memory
	Memory Hierarchy
	Streaming Multiprocessors
	Executing Thread Blocks
	Scalability
	Warps As Scheduling Unit
	Warp Scheduling
	Zero Overhead Warp Scheduling
	Warp Organization
	Control Flow
	Control Divergence
	Divergence Examples
	Slide 29
	Slide 30
	Slide 31
	Matrix Multiplication
	Tiled Matrix Multiplication

