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CPUs and GPUs

• CPU – Core
– Local cache
– Registers
– control unit

• GPU – Compute unit
– Cache
– Registers
– SIMD 
– Threading



  

CPU vs GPU Organization



CPU –  Low Latency 

• Large cache – on chip

• Sophisticated control
– Branch prediction
– Data forwarding

• Powerful ALU



GPU – High Throughput

• Throughput oriented design

• Small caches

• Simple control

• Energy efficient ALUs

• Massive number of threads to tolerate 
latencies



Heterogeneous Programming

• Use both CPU and GPU

• Use CPU for serial parts
– Where latency matters

• Use GPU for parallel parts
– Where throughput matters



CUDA C

• Compute Unified Device Architecture
– Created by Nvidia

• Hierarchical thread organization

• Heterogeneous host + device 
programming
– Serial code host
– Parallel code (kernel) device



CUDA Architecture

• Three dimensional grid
– This constitutes the “kernel”

• Three dimensional blocks in the grid
– Holds local memory and threads
– Maximum threads determined by hardware

•  Threads of execution
– “Warp” of 32 threads



  

Von Neumann Architecture

Memory I/O

ALU Registers

PC IRControl Unit

Processing Unit

Thread



  

SPMD

• Single Program, Multiple Data
• All threads run the exact same program
• Each thread knows its indices
– Compute memory addresses
– Make control decisions
– int ndx = blockIdx.x * blockDim.x + threadIdx.x



  

Thread Blocks

Threads are organized into blocks
• Threads within a block cooperate via
– Shared memory
– Synchronization
– Atomic operations

• Threads in different blocks cannot affect 
each other



  

Grid of Thread Blocks



  

CUDA Function Declarations

executed callable

__device__ float deviceFunction() device device

__global__ void kernelFunction() device host

__host__ float hostFunction() host host

__global__ denotes a kernel function

     must return void

__device__ and __host__ can be used together



Vector Addition
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Vector Addition (kernel)

// CUDA C

//

__global__

void vecAddKern( float* result, float* a, float* b, int 
count) {

  const int ndx = blockIdx.x * blockDim.x + 
threadIdx.x;

  if (ndx < count)

     result[ndx] = a[ndx] + b[ndx];

}



  

Vector Addition (host)

// CUDA C

__host__

void vecAdd( float* result, float* a, float* b, int 
count) {

   // magic to allocate memory, etc., here

  dim3 dimGrid = (ceil(count/256), 1, 1 );

  dim3 dimBlock = (256, 1, 1 );

   vecAddKern<<<dimGrid, dimBlock>>>( rr, aa, 
bb, count);

  // magic to deallocate memory, store result, etc., 
here

}



  

Host / Device Memory

• Host can transfer data to and from device
• Within a device, blocks can access device 

global memory
• Within a block, threads can access block 

local memory
• Within a thread, a set of registers exists 

which are local to that thread



  

Memory Hierarchy



  

Streaming Multiprocessors



  

Executing Thread Blocks

• Threads assigned in blocks
– Up to 8 blocks per SM (typical)
– Up to 1536 total threads (typical)

• SM manages block/thread indices
• SM schedules thread execution



  

Scalability



  

Warps As Scheduling Unit

• 32 threads are assigned to a warp (typical)
• An implementation detail
– Not part of the CUDA programming model

• Warps execute in Single Instruction 
Multiple Data mode



  

Warp Scheduling



  

Zero Overhead Warp Scheduling

• At any time, 1 of a small number of warps 
are executed by the SM

• Next operands ready, warp is eligible for 
execution

• Eligible warps selected based on priority
• All threads in a warp execute the same 

instruction when warp is selected



  

Warp Organization

• Threads are allocated sequentially into 
warps
– Warp 0 starts with thread 0, etc.

• This is actually predictable and can be 
used to optimize code

• Warp size can change from generation to 
generation

• Never rely on ordering within warps or 
between warps



  

Control Flow

• Main concern with branching is divergence
• Threads within a single warp take different 

paths
• Different paths are serialized in current 

GPUs
– Control paths taken by threads are traversed 

one at a time until all are completed



  

Control Divergence



  

Divergence Examples

• With control divergence:
–   if (threadIdx.x > 2) …
– Two different control paths in a warp

• Without control divergence:
–   if (threadIdx.x / WARP_SIZE > 2) . . . 
– Two different control paths in the block



  

Open CL

• Initiated by Apple
• Cross platform programming in CPUs, 

GPUs, FPGAs, DSPs, etc. 
• Draws heavily on CUDA

– More complex and busy due to need to 
maximize portability

• Many design decisions made to ease the 
task of vendors adapting to OpenCL



  

Open ACC

• Can be used to write data parallel 
programs in Fortran, C and C++

• Uses compiler directives (pragmas)
– #pragma in C or C++

• Programmers can often begin with a fully 
sequential version then annotate with 
pragmas for parallelization

• Pragmas can be ignored (maybe)



  

C++ AMP

• From Microsoft
• Similar to Open ACC
• Allows programmers to assert more 

control
• Can use multidimensional indices so that 

the data doesn't have to be manually 
linearized



  

Matrix Multiplication



  

Tiled Matrix Multiplication
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